Minggu, 25 Maret 2012

High-Speed Memory (The Modern History of Computing)

High-Speed Memory

The EDVAC and ACE proposals both advocated the use of mercury-filled tubes, called ‘delay lines’, for high-speed internal memory. This form of memory is known as acoustic memory. Delay lines had initially been developed for echo cancellation in radar; the idea of using them as memory devices originated with Eckert at the Moore School. Here is Turing's description:

It is proposed to build "delay line" units consisting of mercury … tubes about 5′ long and 1″ in diameter in contact with a quartz crystal at each end. The velocity of sound in … mercury … is such that the delay will be 1.024 ms. The information to be stored may be considered to be a sequence of 1024 ‘digits’ (0 or 1) … These digits will be represented by a corresponding sequence of pulses. The digit 0 … will be represented by the absence of a pulse at the appropriate time, the digit 1 … by its presence. This series of pulses is impressed on the end of the line by one piezo-crystal, it is transmitted down the line in the form of supersonic waves, and is reconverted into a varying voltage by the crystal at the far end. This voltage is amplified sufficiently to give an output of the order of 10 volts peak to peak and is used to gate a standard pulse generated by the clock. This pulse may be again fed into the line by means of the transmitting crystal, or we may feed in some altogether different signal. We also have the possibility of leading the gated pulse to some other part of the calculator, if we have need of that information at the time. Making use of the information does not of course preclude keeping it also. (Turing [1945], p. 375)
Mercury delay line memory was used in EDSAC, BINAC, SEAC, Pilot Model ACE, EDVAC, DEUCE, and full-scale ACE (1958). The chief advantage of the delay line as a memory medium was, as Turing put it, that delay lines were "already a going concern" (Turing [1947], p. 380). The fundamental disadvantages of the delay line were that random access is impossible and, moreover, the time taken for an instruction, or number, to emerge from a delay line depends on where in the line it happens to be.

In order to minimize waiting-time, Turing arranged for instructions to be stored not in consecutive positions in the delay line, but in relative positions selected by the programmer in such a way that each instruction would emerge at exactly the time it was required, in so far as this was possible. Each instruction contained a specification of the location of the next. This system subsequently became known as ‘optimum coding’. It was an integral feature of every version of the ACE design. Optimum coding made for difficult and untidy programming, but the advantage in terms of speed was considerable. Thanks to optimum coding, the Pilot Model ACE was able to do a floating point multiplication in 3 milliseconds (Wilkes's EDSAC required 4.5 milliseconds to perform a single fixed point multiplication).

In the Williams tube or electrostatic memory, previously mentioned, a two-dimensional rectangular array of binary digits was stored on the face of a commercially-available cathode ray tube. Access to data was immediate. Williams tube memories were employed in the Manchester series of machines, SWAC, the IAS computer, and the IBM 701, and a modified form of Williams tube in Whirlwind I (until replacement by magnetic core in 1953).

Drum memories, in which data was stored magnetically on the surface of a metal cylinder, were developed on both sides of the Atlantic. The initial idea appears to have been Eckert's. The drum provided reasonably large quantities of medium-speed memory and was used to supplement a high-speed acoustic or electrostatic memory. In 1949, the Manchester computer was successfully equipped with a drum memory; this was constructed by the Manchester engineers on the model of a drum developed by Andrew Booth at Birkbeck College, London.

The final major event in the early history of electronic computation was the development of magnetic core memory. Jay Forrester realised that the hysteresis properties of magnetic core (normally used in transformers) lent themselves to the implementation of a three-dimensional solid array of randomly accessible storage points. In 1949, at Massachusetts Institute of Technology, he began to investigate this idea empirically. Forrester's early experiments with metallic core soon led him to develop the superior ferrite core memory. Digital Equipment Corporation undertook to build a computer similar to the Whirlwind I as a test vehicle for a ferrite core memory. The Memory Test Computer was completed in 1953. (This computer was used in 1954 for the first simulations of neural networks, by Belmont Farley and Wesley Clark of MIT's Lincoln Laboratory (see Copeland and Proudfoot [1996]).

sumber:
http://plato.stanford.edu/entries/computing-history/

Tidak ada komentar:

Posting Komentar